Reuse of urine in agriculture
Can pharmaceuticals cause a problem?

M. Hammer*, J. Clemens**, R. Otterpohl*

*Institute for Wastewater Management and Water Protection
Hamburg University of Technology

**Department of Plant Nutrition
University of Bonn
Introduction

• Pharmaceutical residues (PhaR) are found in the environment since decades: 1970, 1973, 1976…

• Large investigations started in 1990s when analyzing tools improved

• Took time until problem was realized
 » First - major polluter expected: hospitals
 » Now - major polluter detected: households

• Today’s wastewater treatment plants (WWTP) are not able to hold back PhaR
Pathways of PhaR

- Medicinal products for human use
 - Excretion (hospital effluents)
 - Municipal waste water
 - Excretion (private households)
 - Domestic waste
 - Sewage farms
 - Sewage sludge's
 - Surface water
 - Aqua cultures
 - Pharmaceutical production plants
 - Waste disposal site
 - Soil
 - Drinking water
- Medicinal products for animal use
 - Excretion
 - Manure
Overview about pharmaceutical groups

- Antibiotic (12%)
- Beta blocker (6%)
- Bronchospasmolytic drug (6%)
- Diagnostic agent (6%)
- Disinfectant (6%)
- Lipid regulation drug (5%)
- Gastrointestinal drug (4%)
- Psychopharmacologic agent (4%)
- Unbekannt (21%)
- Others (12%)
Discharge of PhaR

Mainly via urine
Concentrations of PhaR
Pathways of PhaR

Medicinal products for human use
- Excretion (hospital effluents)
- Excretion (private households)
 - municipal waste water
 - sewage treatment plants (STPs)
 - Sewage sludge's
 - surface water
 - aqua cultures
 - pharmaceutical production plants

Medicinal products for animal use
- waste disposal (unused medicine)
 - domestic waste
 - sewage sludge's
 - waste disposal site
 - drinking water

Yellow water

Heberer (2002)
Pharmaceuticals in agricultural soils

- 20 substances found in soil
 » Applied through sewage sludge and manure
 » Below 40cms depths: nothing detected
 » Degrade after application

- Plants
 » Found in each part, highest amounts in side roots, then roots.
 » Also in grain of wheat (when 0.5 mg/kg DM by manure application)
Antibiotics

Amounts applied [g ha\(^{-1}\) a\(^{-1}\)]

- **Tetracycline**
- **Oxytetracycline**
- **Chlortetracycline**
- **Sulfamethazine**
- **Sulfadiazine**

- Pig slurry
- Cattle slurry
- Human urine

Institute of Wastewater Management and Water Protection
Hormones

Amounts applied [g ha\(^{-1}\) a\(^{-1}\)]

- Estrone
- 17α-Ethinylestradiol
- 17β-Estradiol

pig slurry

- cattle slurry
- human urine

TUHH
Other pharmaceuticals

Flux (g ha\(^{-1}\) a\(^{-1}\))

- Bezafibrate
- Carbamazepine
- Diclofenac
- Ibuprofen
- Primidone
- Propyphenazone

Pharmaceuticals
Fertilization on urine base depends on...

- Source of urine
- Amount / Nutrient composition: max. 20 m³ ha⁻¹ a⁻¹
- Storage over some time – change of pH
- Technique of application
- Timing of fertilization
- Type of crop / crop rotation
Conclusion

- Urine can be field applied in a dosage of about 20 m³ ha⁻¹ a⁻¹.
- Hormones’ and antibiotics’ fluxes show higher values in animal manure than in urine.
- Certain aspects not finally discussed.
- Source separation is a promising option to save water bodies and groundwater from pollution.
Thank you!

Contact:
Martina Hammer
m.hammer@tuhh.de
Degradation in storage tank

at pH 9

Strompen et al. (2003)
Degradation in storage tank at pH 2

Strompen et al. (2003)
Treatment of urine – steam stripping

Results of:
Tettenborn, F. (2006)
Treatment of urine - ozonisation

Results of:
Tettenborn, F. (2006)